

Challenges for PFAS remediation

(...with only a slight bias towards ultrasound technology....)

Madeleine Bussemaker

<u>m.bussemaker@surrey.ac.uk</u>

@madbuss

Soil remediation

Soil Stabilisation

- Add a sorbent such as activated carbon
- Prevent leaching

Soil capping

 Physical barrier to prevent PFAS leaching

Transfer to landfill

• Potential enter as leachate

Ball milling?

Soil remediation

Soil remediation

The treatment train approach

Separation technologies

- Activated carbon
- Ion exchange/silicas
- Membrane
- Foam fractionation

Separation Technologies

TREATMENT: Status	Efficacy for different PFASs			Solution composition		Mosto /sido strooms
	PFEAs	SCs [*]	LCs*	Matrix	PFAS	waste/side streams
GAC / PAC: GAC implemented in the US for remediation	None - medium	None- Medium	Medium (not all)	Organics compete	Can remove ~90% PFOS, at ppb (μg/L)	Contaminated solid (PAC), solid for regeneration (GAC)
RESINS / SILICAS: Large scale available for IX resins. Silicas at lab stage.	NR	IX is less efficient	Yes	Depends on absorbent chemistry	Can remove ~99% PFASs at ppb (µg/L)	Regenerate solutions, e.g. 70% CH ₃ OH and 1% NaOH with ppm (mg/L) PFAS
MEMBRANES: Expensive, polishing step, mostly lab scale.	NR	Yes	Yes	Rejection impacted by organics	Reported range up to ppm (mg/L)	Membrane rejectate, spent membranes
FOAM FRACTIONATION: implemented for sludge, leachate remediation	NR	Yes	Yes	Unlikely	Input in ppb (μg/L) range, output can need polishing	Concentrated (oxidised) PFAS solution (ppm range), sedimentation

*PFSAs with 6 or more carbons in a carbon chain and PFCAs with 7 or more carbons are defined as long chain (LC) and short chains (SCs) have 5 or fewer and 6 or fewer carbons, respectively.

The treatment train approach

Separation technologies

- Activated carbon
- Ion exchange
- Silicas
- Foam fractionation

Challenged by

- Solid matrix / PFAS concentrate to deal with
- New and emerging PFAS
- Shorter chain PFAS

Innovative degradation technologies

TREATMENT	Mechanism	Specific Challenges		
Electron Beam	Water radiolysis using a electron beam of 1-10 MeV	 Small treatment area / depth Practicalities of implementation 		
Ultrasound / Sonolysis	Cavitation collapse generates high temperature / non equilibrium plasma	Ubiquity of application / understanding (best at high frequencies) Complex bubble dynamics		
Plasma	Surface or submerged plasma to create reactive species to degrade pollutants	• SC degradations / productions debated		
Electrochemical (via e ⁻ aq)	Uses electron transfer from customised anode to the PFAS	Production of reduced matrix elements		
Photochemical	UV irradiation with reductants (sulphite, iodide, dithionite) or catalysts	 Use of environmentally unfriendly catalysts / reductants Scavenging of e⁻_{aq} by matrix elements 		

Comparing degradation technologies (PFOS) SURREY

<u>Technology</u> (Reaction time)	<u>C_</u> (mg L ⁻¹)	Efficiency (x10 ⁻³ g kW ⁻¹ h ⁻¹)	Short chains prod?
Photochemical (240 hours)	20.0	1.33	Observed, significant quantity
			indicated (71% F ⁻ release)
Photochemical, ferric ion (60 hours)	10.0	2.90	≈14% of initial mass
Sonication 619 kHz (2 hours)	5.00	9.01	Almost none implied ($\approx 100\% F^{-}$
SUMCATION, 016 KHZ (S MOUIS)		8.01	release)
Dhotochomical porculfato (2 hours)	10.0	0.00	Observed, significant quantity
Photochemical, persuitate (2 hours)		9.00	indicated (76% F ⁻ release)
Photochemical, propanol (24 hours)	20.0	15.2	Not discussed
Sonication, 400 kHz (4 hours)*	9.42	15.5	1% of initial mass
Plasma (4 hours)	50.0	26.0	Not discussed, none implied
Sonication, 400 kHz (2 hours)*	9.42	26.1	13% of initial mass
Sonication, 358 kHz (3 hours)	59.5	41.7	Not discussed
Diacma (0 E bours)	0.0001	69.0	Observed, 5.65% of initial
			mass after 40 minutes
Placma (1 hour)	100	621	Observed, significant quantity
	100	ΟΖΙ	indicated (≈30% F ⁻ release)

Implementation challenges

Scale up

- Difficult to replicate bench top efficiency for larger scales
- Efficacy reported varies and is often debatable
- Variation in analytical techniques

Variety in solution compositions

- Concentration of PFAS effects efficiency
- Other contaminants / species can scavenge the e_{aq}^- pretreatment??

Emerging PFAS issues

- Shorter chains / next gens
- Ultrashorts

How does it fit in the context of the treatment train?

- For better efficiency likely need a "polishing" step
- Cost / benefit analysis in the whole context systems engineering?

A view of PFAS remediation

A view of PFAS remediation

The future questions...

- Next-gen PFAS, ultrashorts...
- What about other solid PFAS wastes?
- How to piece it all together?
- Funding for research!

